									Chapter 7

Customizing SNMPc

Introduction

SNMPc contains �XE "Customizing SNMPc"�several features that you can use to customize its functionality, including dynamic selection of node icon, customized event actions, import of third party MIBs, and WinSNMP and Windows DDE Applications Programming Interfaces (API). This chapter describes these features.

To use many of the customization features, you will have to work outside of the Windows environment (although you can use a DOS window). You will generally also need to obtain and use the Windows Software Developers Kit (SDK)�XE "Windows SDK"� �XE "SDKpaint tool"�and the Microsoft 'C' compiler.

Event Filters

When an event occurs, SNMPc �XE "SNMPc files: bitmaps"�searches through a list of event filters and tries to find a matching entry. If a match is found, SNMPc will perform the associated actions in the filter action list. If no matching entry is found, SNMPc will perform the default action (log and beep).

Use the Config/Event Actions command to configure the actions that SNMPc should take when an event occurs. The Event Actions command is fully described in Chapter 4, Command Reference.

Node Icons

Icons used to �XE "Create: new icons"��XE "Bitmap directory (icons)"��XE "Files: bitmaps"��XE "Icon: creating new icons"��XE "Node attributes: creating new icons"�represent nodes in the Map Window reside in the directory c:\snmpc\bitmaps. Each icon is in the standard Windows Icon format, as defined in the Windows SDK. Use the SDKpaint tool to create new icons. Create the icon and copy it into the destination directory. It will be available for use the next time you run SNMPc.

Icons must contain one 32X32 16 color bitmap�XE "Color icon bitmap"�. They optionally can also contain a 32X32 monochrome bitmap�XE "Monochrome icon bitmap"�.

The color bitmap is used for normal map display. The monochrome bitmap is used as a cursor �XE "Cursor definition"�when a node is moved. If the monochrome bitmap is missing, a circle is substituted�XE "Special: icons"��XE "Junction: special icon"�.

Note: you can modify the icons supplied with SNMPc, but do not overwrite or remove the special icon auto.ico.

�Automatic Icon and API Program Selection

When you select auto.ico �XE "Automatic icon selection: map to object identifier"�as the node icon, �XE "Dynamic: selection of node icon"�SNMPc uses the Node Identify variable value to decide what icon to display. SNMPc looks up the node object identifier �XE "Files: autoico.txt"��XE "Icon: automatic selection: mapping to object identifier"��XE "SNMPc files: autoico.txt"�in the text file, c:\snmpc\mibfiles\autoico.txt. The icon is a standard Windows BMP file and must reside in the c:\snmpc\bitmaps directory.

When you select auto.exe �XE "Automatic icon selection: map to object identifier"�as the node API Exec program, �XE "Dynamic: selection of node icon"�SNMPc uses the Node Identify variable value to decide what program to run when you double click on an Agent node icon. SNMPc looks up the node object identifier �XE "Files: autoico.txt"��XE "Icon: automatic selection: mapping to object identifier"��XE "SNMPc files: autoico.txt"�in the text file, c:\snmpc\mibfiles\autoico.txt. The program must reside in the c:\snmpc\apiexec directory.

The autoico.txt file contains one entry on each line. The first field in the entry is the Node Identify variable value. Use the Manage/SNMP Poll command to get this value. The second field is the icon name. The third field contains the name of an API program. The following is an example of this file.

	-- Castle Rock Computing bridges

	crLocbridgeES200	bridge.ico �XE "Bridge.ico icon: mapping to object identifier"�

	crLocRouterES200	bridge.ico

	crRemRouterCRS5100	router.ico

	-- Plexcom concentrators

	crPlexcomHub8091	enconcen.ico plexview.exe�XE "Enconcen.ico icon"�

	crPlexcomHub8039	trconcen.ico plexview.exe

�	-- ACC bridges

	sbeACS4140_4111	router.ico�XE "Router.ico icon"�

	sbeACS4141		gateway.ico�XE "Gateway.ico icon"�

	cisco.1.8		workstat.ico�XE "Workstat.ico icon"�

You may leave blank lines and use comments prepended by two dash characters,

 "--". Note that hubview.exe is the default API Exec program and does not need to be specified in the autoico.txt file.

�Custom Tables

You can define Custom Tables dynamically from tables displayed with the Display MIB Table command. Table columns can be deleted and merged with other tables. The resultant table definition is saved under a user specified name and added to the pseudo-MIB named $custom. Custom table names can be used by the Edit / Node History and Manage / Display MIB Table commands, in macro files, and from Application Programming Interface. In all cases, the table name must be preceded by the "$custom|" MIB identifier.

Please refer to the Manage / Display MIB Table command in Chapter 4, Command Reference, for a complete description of Custom Tables.

Custom Menus

You can add your own menu items, including pull-aside menus, to the end of the Manage menu. Custom menus can display a MIB table; graph, list, or edit a MIB table entry; and start an API program.

Custom menus are added by using the Menu button of the Display MIB Table command, or with the Config / Custom Menus command. For a description of these commands please refer to Chapter 4, Command Reference.

Macro Files

Macro files contain low level commands to perform a series of SNMP operations. Currently, only the SET command is implemented. Macro files are named xxxxx.mac and reside in the c:\snmpc\apiexec directory. Macro files are accessed by the Run custom menu option. Macro files can also be set as the API program in the Edit Node dialog box and the Edit Event Filter dialog box. Each line in a macro file has the following form:

	SET	"variable name"		"variable value"

Variable Name is any fully specified SNMP MIB variable. Variable Value is an appropriate value for the named variable. For private MIB variables, you should always prepend the MIB name to the variable name to improve performance and avoid name clashes. The following are some example macro statements.

	SET	"sysContact.0"		"Fred Smith"

	SET 	"ACC-MIB|sysConsoleSpeed.1"	"9600"

	SET	"ifAdminStatus.2"		"down"

Notice that the second example, which sets the console speed to 9600 baud on an ACC bridge, has the ACC MIB name, "ACC-MIB" prepended to the variable name.

The main use of macro files is to upload node configurations. Generally, the macro file is created automatically by a configuration download program.

�SNMP MIB Compiler

Overview

The SNMPc MIB database �XE "Table: create definitions"��XE "Management Information Base (MIB): compiler: adding MIB definitions"��XE "Create: MIB definitions"��XE "Compile MIB: guidelines"��XE "Add: MIB definitions"�and �XE "Files: mibfiles directory"��XE "Files: mib.dat MIB database"��XE "Experimental MIB: importing definitions"��XE "Import of private MIB"��XE "Private MIB, import of definitions"��XE "Mib.dat MIB database"��XE "Mibfiles directory"�source files reside in the directory, c:\snmpc\mibfiles.�XE ".MIB extension"� �XE "Management Information Base (MIB): database"�Source files are named xxx.mib, where xxx is the name of the MIB, and the MIB database itself is stored in three files, mib.dat, mib.idx, and mib.trp. To add a new MIB file, copy the source to c:\snmpc\mibfiles directory, and use the Config / Compile MIB command to load the MIB. The Compile MIB command is described in Chapter 4, Command Reference.

The MIB source files comply with RFC 1212, Concise MIB Definitions.

SNMPc also allows some digressions from RFC1212 format. These changes allow new structures to be abstracted from the original definitions. To keep the standard and private MIB files in RFC1212 format, you can add any extensions into separate MIB source files.

Auxiliary Tables

The SNMPc MIB Compiler uses SEQUENCE �XE "Sequence MIB definitions"�definitions to define tables�XE "Define MIB tables"�. It also allows a variable to be named in more than one SEQUENCE. Therefore, you can define additional tables by creating new SEQUENCE definitions. For example, the SNMPc source for standard Mib-2 has the following two sequences defined for the interface group, that are not normally present.

	IfPackStats ::= SEQUENCE {�		ifIndex		INTEGER,

		ifInUcastPkts	COUNTER,

		ifInNUcastPkts	COUNTER,

		ifOutUcastPkts	COUNTER,

		ifOutNUcastPkts	COUNTER

	}

	IfByteStats ::= SEQUENCE {

		ifIndex		INTEGER,

		ifInOctets	COUNTER,

		ifOutOctets	COUNTER

	}

Auxiliary tables must be attached to the MIB definition tree. The attachment point is normally at the level above the first variable defined in the table. In normal MIB tables, this is always the "Entry" object (which is the table name in SNMPc). However, if there are any enterprise specific variables in the table, it will be attached below the parent of the first enterprise specific variable in the table.

�Note: table definitions usually have forward references to variable definitions. SNMPc can only handle unresolved references in one table at a time. Therefore, you can not place one table definition immediately after another if they both have forward references. This problem is easily avoided by placing any new table definitions after all of the variables named within the table.

Automatic Table Definition

After the MIB compiler has finished compiling all sources, it dynamically creates table definitions for any remaining variables that are not referenced in a SEQUENCE�XE "Dynamic: MIB table definitions"�. Each group of variables with a common parent is placed into a table definition. These tables are named groupNameInfo, where groupName is the name of the parent.

Programming Interfaces

WinSNMP DLL Interface

SNMPc includes a WinSNMP DLL that works with any WinSock TCP/IP stack. WinSNMP is an emerging “de-facto” standard programming interface for SNMP management applications under Microsoft Windows. WinSNMP was developed by a consortium of software manufacturers and is supported by many vendors. In the future it can be expected that most TCP/IP vendors will provide a WinSNMP DLL.

WinSNMP provides full SNMP access, including receipt of traps. WinSNMP is protocol and stack independent and does not require a manager to be present. You can run your WinSNMP application without running SNMPc.

WinSNMP does not provide access to internal manager functions, such as map node creation, deletion, etc.

The WinSNMP library, include files, documentation, and sample source code is available in the SNMPc SDK. The SNMPc SDK is free and can be downloaded electronically from our BBS or FTP site.

Windows DDE Interface

You �XE "Applications Programming Interface (API): creating API programs"��XE "Enterprise Specific MIB: creating API programs"�can write a program that communicates with SNMPc using the Windows DDE interface. You can perform standard SNMP GET, GETNEXT, and SET requests. SNMPc will also notify your program when an event occurs. The SNMPc DDE interface also includes functions for manipulating internal SNMPc attributes, and for executing SNMPc menu commands.

You can also use existing applications, such as Microsoft Excel, as SNMPc API programs. Excel uses macros to get information from DDE servers, such as SNMPc, which can then be displayed in tables and graphs.

SNMPc DDE include files, documentation, and sample source code is available in the SNMPc SDK. The SNMPc SDK is free and can be downloaded electronically from our BBS or FTP site.

�Running API Programs

�XE "Running API programs"�API programs can be started in several different ways. You can start the program as you would any other Windows, program, that is, using the Run option of the Program manager. Alternatively, if you copy the program to the c:\snmpc\apiexec directory, you can start the program from within SNMPc.

The most typical way to start an API program is by double clicking on a node. To enable this mechanism you must specify the program name in the API Exec field of the Edit Node dialog box (using the Map/Edit Object command).

You can start an API program by using the SNMPc Manage/Run API Program command, or by using a custom menu option. When a node can use more than one API program, you must use one of these options for some of the programs, because only one program can be specified as the API Exec program�XE "Multiple: API programs"�.

The final way to start an API program is when an event occurs. To use this mechanism you must create an event filter and specify the API Exec action, as well as the name of the program to run.

When an API program is started by SNMPc, the lpCmdLine�XE "LpCmdLine for API program"� argument to the WindowMain�XE "WindowMain in API program"� function will contain the SNMPc Node Name of the currently selected node, followed by the SNMPc frame window number. If the API program is started because of an event, the associated log file entry is passed after the window number in the lpCmdLine argument (separated from the node name by a space). If the API program is started from a custom menu, SNMPc passes an optional second argument specified in the menu definition after the window number.

You can use the window number as the parent when creating the application main window. In this way your application will be a child of SNMPc.

�Configuring HubView and BitView

Starting HubView or BitView

You normally start HubView or BitView by double clicking on an Agent node in the SNMPc map. You can also create a Manage custom menu to start HubView or BitView. In either case, there must be an appropriate device definition file in the c:\snmpc\hubview directory for the selected Agent node.

If you set the node API Exec program, using the Edit / Edit Object command, to hubview.exe, SNMPc will start HubView. If you set the node API Exec program to bitview.exe, SNMPc will start BitView.

Normally, the node API Exec program is set to auto.exe. In this case SNMPc will search the c:\snmpc\mibfiles\autoico.txt file for a program to run, and if none is found, SNMPc will run HubView. Since HubView will work for any device, you need not specify hubview.exe in the autoico.txt file. You should specify bitview.exe in the autoico.txt file for any devices that have BitView definition files.

Device Type Map

When you first start HubView or BitView, it sends an SNMP poll to the selected device to get the value for the Node Identify variable. By default, the Node Identify variable is set to sysObjectID.0, which is different for every device type. HubView and BitView use the returned value to look up the device type in the Device Type Map, hubnames.txt, which resides in the hubview directory. You can use the Hub List Notepad icon, in the Network Manager program group, to edit this file.

The format for hubnames.txt is similar to the autoico.txt file described earlier. Each line has two entries, separated by tabs or spaces. The first entry is the value of the Node Identify variable (use Manage/SNMP Poll to get this value); the second value is the name of HubView or BitView device definition file, which also resides in the hubview directory. HubView device definition files have a ".hub" extension. BitView device definition files have a ".bit" extension. You can have a HubView and BitView entry for the same device.

The following is an example of the hubnames.txt file.

	atiHub.1			atihub.hub	-- ATI HubView definition file	atiHub.1			atihub.bit	-- ATI BitView definition file

	hub1012			asante.bit	-- ASANTE BitView definition

	kalEtherSwitch		RFC1213-MIB|sysDescr.0	 -- kalpana redirection

	EPS-500		eps500.bit

	EPS-1500		eps1500.bit

	enterprise*		default.mib	-- catch all

	$repeater		repeater.hub

�Many manufacturers return the same value of sysObjectID for different device types. Usually some other variable can be used to distinguish different devices from the same vendor. In this case you can specify another variable name instead of the definition file name. HubView or BitView will get the value of this variable and perform another lookup.

You can use an asterisk as the last character in the ObjectID name to match any trailing string. For example "enterprises*" matches any device for which the MIB is not compiled into SNMPc.

The last line in the hubnames.txt file has an entry for devices which respond to the standard repeater MIB.

You should make sure that there is one entry in this file for each different node type that exists on the network. If there is no entry, HubView will use the default definition file, default.hub. BitView requires a specific entry because it does not have a default definition file.

Device Definition Files

The HubView device definition files are named xxx.hub and reside in the c:\snmpc\hubview directory. The BitView device definition files are named xxx.bit and reside in the same directory. There are many example HubView and BitView definition files in this directory.

Each file has two sections. The first section defines the custom menus, if any, for the device. The second section defines the SNMP variable names that HubView must use to get configuration information from the node.

Full documentation for the HubView and BitView Device Definition files is available in the SNMPc SDK. The SNMPc SDK is free and is available electronically from our BBS or FTP site.

__

�PAGE�164�		Chapter 7 Customizing SNMPc

__

Chapter 7 Customizing SNMPc		�PAGE�163�

